ribs.visualize.sliding_boundaries_archive_heatmap¶
- ribs.visualize.sliding_boundaries_archive_heatmap(archive, ax=None, *, transpose_measures=False, cmap='magma', aspect='auto', ms=None, boundary_lw=0, vmin=None, vmax=None, cbar='auto', cbar_kwargs=None)[source]¶
Plots heatmap of a
SlidingBoundariesArchive
with 2D measure space.Since the boundaries of
ribs.archives.SlidingBoundariesArchive
are dynamic, we plot the heatmap as a scatter plot, in which each marker is an elite and its color represents the objective value. Boundaries can optionally be drawn by settingboundary_lw
to a positive value.Examples
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from ribs.archives import SlidingBoundariesArchive >>> from ribs.visualize import sliding_boundaries_archive_heatmap >>> archive = SlidingBoundariesArchive(solution_dim=2, ... dims=[10, 20], ... ranges=[(-1, 1), (-1, 1)], ... seed=42) >>> # Populate the archive with the negative sphere function. >>> rng = np.random.default_rng(seed=10) >>> coords = np.clip(rng.standard_normal((1000, 2)), -1.5, 1.5) >>> archive.add(solution_batch=coords, ... objective_batch=-np.sum(coords**2, axis=1), ... measures_batch=coords) >>> # Plot heatmaps of the archive. >>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16,6)) >>> fig.suptitle("Negative sphere function") >>> sliding_boundaries_archive_heatmap(archive, ax=ax1, ... boundary_lw=0.5) >>> sliding_boundaries_archive_heatmap(archive, ax=ax2) >>> ax1.set_title("With boundaries") >>> ax2.set_title("Without boundaries") >>> ax1.set(xlabel='x coords', ylabel='y coords') >>> ax2.set(xlabel='x coords', ylabel='y coords') >>> plt.show()
- Parameters
archive (SlidingBoundariesArchive) – A 2D
SlidingBoundariesArchive
.ax (matplotlib.axes.Axes) – Axes on which to plot the heatmap. If
None
, the current axis will be used.transpose_measures (bool) – By default, the first measure in the archive will appear along the x-axis, and the second will be along the y-axis. To switch this behavior (i.e. to transpose the axes), set this to
True
.cmap (str, list, matplotlib.colors.Colormap) – Colormap to use when plotting intensity. Either the name of a
Colormap
, a list of RGB or RGBA colors (i.e. an \(N \times 3\) or \(N \times 4\) array), or aColormap
object.aspect ('auto', 'equal', float) – The aspect ratio of the heatmap (i.e. height/width). Defaults to
'auto'
.'equal'
is the same asaspect=1
.ms (float) – Marker size for the solutions.
boundary_lw (float) – Line width when plotting the boundaries. Set to
0
to have no boundaries.vmin (float) – Minimum objective value to use in the plot. If
None
, the minimum objective value in the archive is used.vmax (float) – Maximum objective value to use in the plot. If
None
, the maximum objective value in the archive is used.cbar ('auto', None, matplotlib.axes.Axes) – By default, this is set to
'auto'
which displays the colorbar on the archive’s currentAxes
. IfNone
, then colorbar is not displayed. If this is anAxes
, displays the colorbar on the specified Axes.cbar_kwargs (dict) – Additional kwargs to pass to
colorbar()
.
- Raises
ValueError – The archive is not 2D.