Source code for ribs.visualize._cvt_archive_heatmap

"""Provides cvt_archive_heatmap."""
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import shapely
from import ScalarMappable
from scipy.spatial import Voronoi  # pylint: disable=no-name-in-module

from ribs.visualize._utils import (archive_heatmap_1d, retrieve_cmap, set_cbar,
                                   validate_df, validate_heatmap_visual_args)

# Matplotlib functions tend to have a ton of args and statements.
# pylint: disable = too-many-arguments, too-many-statements

[docs]def cvt_archive_heatmap(archive, ax=None, *, df=None, transpose_measures=False, cmap="magma", aspect=None, lw=0.5, ec="black", vmin=None, vmax=None, cbar="auto", cbar_kwargs=None, rasterized=False, clip=False, plot_centroids=False, plot_samples=False, ms=1, pcm_kwargs=None): """Plots heatmap of a :class:`~ribs.archives.CVTArchive` with 1D or 2D measure space. In the 2D case, we create a Voronoi diagram and shade in each cell with a color corresponding to the objective value of that cell's elite. In the 1D case, we plot a horizontal series of cells. Depending on how many cells are in the archive, ``ms`` and ``lw`` may need to be tuned. If there are too many cells, the Voronoi diagram and centroid markers will make the entire image appear black. In that case, try turning off the centroids with ``plot_centroids=False`` or even removing the lines completely with ``lw=0``. Examples: .. plot:: :context: close-figs Heatmap of a 2D CVTArchive >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from ribs.archives import CVTArchive >>> from ribs.visualize import cvt_archive_heatmap >>> # Populate the archive with the negative sphere function. >>> archive = CVTArchive(solution_dim=2, ... cells=100, ranges=[(-1, 1), (-1, 1)]) >>> x = np.random.uniform(-1, 1, 10000) >>> y = np.random.uniform(-1, 1, 10000) >>> archive.add(solution=np.stack((x, y), axis=1), ... objective=-(x**2 + y**2), ... measures=np.stack((x, y), axis=1)) >>> # Plot a heatmap of the archive. >>> plt.figure(figsize=(8, 6)) >>> cvt_archive_heatmap(archive) >>> plt.title("Negative sphere function with 2D measures") >>> plt.xlabel("x coords") >>> plt.ylabel("y coords") >>> .. plot:: :context: close-figs Heatmap of a 1D CVTArchive >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from ribs.archives import CVTArchive >>> from ribs.visualize import cvt_archive_heatmap >>> # Populate the archive with the negative sphere function. >>> archive = CVTArchive(solution_dim=2, ... cells=20, ranges=[(-1, 1)]) >>> x = np.random.uniform(-1, 1, 1000) >>> archive.add(solution=np.stack((x, x), axis=1), ... objective=-x**2, ... measures=x[:, None]) >>> # Plot a heatmap of the archive. >>> plt.figure(figsize=(8, 6)) >>> cvt_archive_heatmap(archive) >>> plt.title("Negative sphere function with 1D measures") >>> plt.xlabel("x coords") >>> Args: archive (CVTArchive): A 1D or 2D :class:`~ribs.archives.CVTArchive`. ax (matplotlib.axes.Axes): Axes on which to plot the heatmap. If ``None``, the current axis will be used. df (ribs.archives.ArchiveDataFrame): If provided, we will plot data from this argument instead of the data currently in the archive. This data can be obtained by, for instance, calling :meth:`` with ``return_type="pandas"`` and modifying the resulting :class:`~ribs.archives.ArchiveDataFrame`. Note that, at a minimum, the data must contain columns for index, objective, and measures. To display a custom metric, replace the "objective" column. transpose_measures (bool): By default, the first measure in the archive will appear along the x-axis, and the second will be along the y-axis. To switch this behavior (i.e. to transpose the axes), set this to ``True``. Does not apply for 1D archives. cmap (str, list, matplotlib.colors.Colormap): The colormap to use when plotting intensity. Either the name of a :class:`~matplotlib.colors.Colormap`, a list of RGB or RGBA colors (i.e. an :math:`N \\times 3` or :math:`N \\times 4` array), or a :class:`~matplotlib.colors.Colormap` object. aspect ('auto', 'equal', float): The aspect ratio of the heatmap (i.e. height/width). Defaults to ``'auto'`` for 2D and ``0.5`` for 1D. ``'equal'`` is the same as ``aspect=1``. See :meth:`matplotlib.axes.Axes.set_aspect` for more info. lw (float): Line width when plotting the Voronoi diagram. ec (matplotlib color): Edge color of the cells in the Voronoi diagram. See `here <>`_ for more info on specifying colors in Matplotlib. vmin (float): Minimum objective value to use in the plot. If ``None``, the minimum objective value in the archive is used. vmax (float): Maximum objective value to use in the plot. If ``None``, the maximum objective value in the archive is used. cbar ('auto', None, matplotlib.axes.Axes): By default, this is set to ``'auto'`` which displays the colorbar on the archive's current :class:`~matplotlib.axes.Axes`. If ``None``, then colorbar is not displayed. If this is an :class:`~matplotlib.axes.Axes`, displays the colorbar on the specified Axes. cbar_kwargs (dict): Additional kwargs to pass to :func:`~matplotlib.pyplot.colorbar`. rasterized (bool): Whether to rasterize the heatmap. This can be useful for saving to a vector format like PDF. Essentially, only the heatmap will be converted to a raster graphic so that the archive cells will not have to be individually rendered. Meanwhile, the surrounding axes, particularly text labels, will remain in vector format. clip (bool, shapely.Polygon): Clip the heatmap cells to a given polygon. By default, we draw the cells along the outer edges of the heatmap as polygons that extend beyond the archive bounds, but these polygons are hidden because we set the axis limits to be the archive bounds. Passing `clip=True` will clip the heatmap such that these "outer edge" polygons are within the archive bounds. An arbitrary polygon can also be passed in to clip the heatmap to a custom shape. See :pr:`356` for more info. Only applies to 2D archives. plot_centroids (bool): Whether to plot the cluster centroids. plot_samples (bool): Whether to plot the samples used when generating the clusters. ms (float): Marker size for both centroids and samples. pcm_kwargs (dict): Additional kwargs to pass to :func:`~matplotlib.pyplot.pcolormesh`. Only applicable to 1D heatmaps. linewidth and edgecolor are set with the ``lw`` and ``ec`` args. Raises: ValueError: The archive's measure dimension must be 1D or 2D. ValueError: ``plot_samples`` is passed in but the archive does not have samples (e.g., due to using custom centroids during construction). """ validate_heatmap_visual_args( aspect, cbar, archive.measure_dim, [1, 2], "Heatmap can only be plotted for a 1D or 2D CVTArchive") if plot_samples and archive.samples is None: raise ValueError("Samples are not available for this archive, but " "`plot_samples` was passed in.") if aspect is None: # Handles default aspects for different dims. if archive.measure_dim == 1: aspect = 0.5 else: aspect = "auto" # Try getting the colormap early in case it fails. cmap = retrieve_cmap(cmap) # Retrieve archive data. if df is None: index_batch ="index") objective_batch ="objective") else: df = validate_df(df) index_batch = df["index"] objective_batch = df["objective"] if archive.measure_dim == 1: # Read in pcm kwargs -- the linewidth and edgecolor are overwritten by # our arguments. pcm_kwargs = {} if pcm_kwargs is None else pcm_kwargs.copy() pcm_kwargs["linewidth"] = pcm_kwargs["lw"] = lw pcm_kwargs["edgecolor"] = pcm_kwargs["ec"] = ec # Sort centroids so they line up left-to-right along the x-axis. centroids_1d = archive.centroids.squeeze() centroid_sort_idx = np.argsort(centroids_1d) sorted_centroids_1d = centroids_1d[centroid_sort_idx] cell_boundaries = np.concatenate(( # Concatenate lower bound. [archive.lower_bounds[0]], # The boundaries can be found by taking the midpoints between the # centroids. (sorted_centroids_1d[:-1] + sorted_centroids_1d[1:]) / 2.0, # Concatenate upper bound. [archive.upper_bounds[0]], )) # centroid_sort_idx tells us which index to place the centroid at such # that it is sorted, i.e., it maps from the indices in the centroid # array to the cell indices. This means that if you index with it, e.g., # arr[centroid_sort_idx], you get a sorted array. # # For computing cell_objectives, we need to know the inverse mapping, # i.e., the mapping from cell indices to centroid indices. This way, # when we index with it, we get the original order of centroids. This # original order then matches with the objectives in objective_batch. inv_idx = np.zeros_like(centroid_sort_idx, dtype=np.int32) for i, x in enumerate(centroid_sort_idx): inv_idx[x] = i # We only want inverse indexes that are actually used in the archive. selected_inv_idx = inv_idx[index_batch] cell_objectives = np.full(archive.cells, np.nan) cell_objectives[selected_inv_idx] = objective_batch ax = archive_heatmap_1d(archive, cell_boundaries, cell_objectives, ax, cmap, aspect, vmin, vmax, cbar, cbar_kwargs, rasterized, pcm_kwargs) # Samples and centroids are plotted at y=0.5 so that they appear along # the center of the diagram. if plot_samples: ax.plot(archive.samples[:, 0], np.full(len(archive.samples), 0.5), "o", c="grey", ms=ms) if plot_centroids: ax.plot(archive.centroids[:, 0], np.full(len(archive.centroids), 0.5), "o", c="black", ms=ms) elif archive.measure_dim == 2: # Retrieve data from archive. lower_bounds = archive.lower_bounds upper_bounds = archive.upper_bounds centroids = archive.centroids if transpose_measures: lower_bounds = np.flip(lower_bounds) upper_bounds = np.flip(upper_bounds) centroids = np.flip(centroids, axis=1) # If clip is on, make it default to an archive bounding box. if clip and not isinstance(clip, shapely.Polygon): clip =[0], lower_bounds[1], upper_bounds[0], upper_bounds[1]) if plot_samples: samples = archive.samples if transpose_measures: samples = np.flip(samples, axis=1) # Retrieve and initialize the axis. ax = plt.gca() if ax is None else ax ax.set_xlim(lower_bounds[0], upper_bounds[0]) ax.set_ylim(lower_bounds[1], upper_bounds[1]) ax.set_aspect(aspect) # Add faraway points so that the edge regions of the Voronoi diagram are # filled in. Refer to # # for more info. interval = upper_bounds - lower_bounds scale = 1000 faraway_pts = [ upper_bounds + interval * scale, # Far upper right. upper_bounds + interval * [-1, 1] * scale, # Far upper left. lower_bounds + interval * [-1, -1] * scale, # Far bottom left. lower_bounds + interval * [1, -1] * scale, # Far bottom right. ] vor = Voronoi(np.append(centroids, faraway_pts, axis=0)) # Calculate objective value for each region. `vor.point_region` contains # the region index of each point. region_obj = [None] * len(vor.regions) min_obj, max_obj = np.inf, -np.inf pt_to_obj = dict(zip(index_batch, objective_batch)) for pt_idx, region_idx in enumerate( vor.point_region[:-4]): # Exclude faraway_pts. if region_idx != -1 and pt_idx in pt_to_obj: obj = pt_to_obj[pt_idx] min_obj = min(min_obj, obj) max_obj = max(max_obj, obj) region_obj[region_idx] = obj # Override objective value range. min_obj = min_obj if vmin is None else vmin max_obj = max_obj if vmax is None else vmax # If the min and max are the same, we set a sensible default range. if min_obj == max_obj: min_obj, max_obj = min_obj - 0.01, max_obj + 0.01 # Vertices of all cells. vertices = [] # The facecolor of each cell. Shape (n_regions, 4) for RGBA format, but # we do not know n_regions in advance. facecolors = [] # Boolean array indicating which of the facecolors needs to be computed # with the cmap. The other colors correspond to empty cells. Shape # (n_regions,) facecolor_cmap_mask = [] # The objective corresponding to the regions which must be passed # through the cmap. Shape (sum(facecolor_cmap_mask),) facecolor_objs = [] # Cycle through the regions to set up polygon vertices and facecolors. for region, objective in zip(vor.regions, region_obj): # Checking for -1 is O(n), but n is typically small. # # We check length since the first region is an empty list by # default: # if -1 in region or len(region) == 0: continue if clip: # Clip the cell vertices to the polygon. Clipping may cause some # cells to split into two or more polygons, especially if the # clip polygon has holes. polygon = shapely.Polygon(vor.vertices[region]) intersection = polygon.intersection(clip) if isinstance(intersection, shapely.MultiPolygon): for polygon in intersection.geoms: vertices.append(polygon.exterior.coords) n_splits = len(intersection.geoms) else: # The intersection is a single Polygon. vertices.append(intersection.exterior.coords) n_splits = 1 else: vertices.append(vor.vertices[region]) n_splits = 1 # Repeat values for each split. for _ in range(n_splits): if objective is None: # Transparent white (RGBA format) -- this ensures that if a # figure is saved with a transparent background, the empty # cells will also be transparent. facecolors.append(np.array([1.0, 1.0, 1.0, 0.0])) facecolor_cmap_mask.append(False) else: facecolors.append(np.empty(4)) facecolor_cmap_mask.append(True) facecolor_objs.append(objective) # Compute facecolors from the cmap. We first normalize the objectives # and clip them to [0, 1]. normalized_objs = np.clip( (np.asarray(facecolor_objs) - min_obj) / (max_obj - min_obj), 0.0, 1.0) facecolors = np.asarray(facecolors) facecolors[facecolor_cmap_mask] = cmap(normalized_objs) # Plot the collection on the axes. Note that this is faster than # plotting each polygon individually with ax.fill(). ax.add_collection( matplotlib.collections.PolyCollection( vertices, edgecolors=ec, facecolors=facecolors, linewidths=lw, rasterized=rasterized, )) # Create a colorbar. mappable = ScalarMappable(cmap=cmap) mappable.set_clim(min_obj, max_obj) # Plot the sample points and centroids. if plot_samples: ax.plot(samples[:, 0], samples[:, 1], "o", c="grey", ms=ms) if plot_centroids: ax.plot(centroids[:, 0], centroids[:, 1], "o", c="black", ms=ms) # Create color bar. set_cbar(mappable, ax, cbar, cbar_kwargs)